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Abstract. The paraxial eikonal Y = Z - j (  r l  + (R - r ) ' / 2 Z  is frequently used in catastrophe 
optics. We show that. except in the far-field limit. i t  can lead not only to quantitative 
errors. but to major qualitative errors unless the singularity involved is three-determinate. 
If at scme point on the local optical axis ( R = 0 )  the exact eikonal has a cuspoid singularity 
or an umbilic singularity with non-zero four-jet. then the paraxial eikonal generically has 
a four-determinate singularity at that point. The consequences for cusp and swallowtail 
foci are explored in detail. We show that such error3 do not result from any obvious failure 
to satisfy the conditions under which Y i \  derived. 

1. Introduction 

Paraxial optics deals with bundles of rays at small angles to each other (Born and 
Wolf, p 193).  At a focus. neighbouring rays coalesce, so a sufficiently small neighbour- 
hood of a (typical) focus must be describable by paraxial optics. A paraxial approxima- 
tion is any approximation valid for a paraxial ray bundle; when introduced at the 
earliest possible stage the result is the paraxial eikonal (derived later; see also Born 
and Wolf (1975. pp 112-3)). 

The study of generic (i.e. typical) foci is the subject of catastrophe optics (Berry 
and Upstill 1980, and references therein; Poston and Stewart 1978) ,  in which the 
paraxial eikonal has been widely used. We show here that the paraxial eikonal is 
incapable of giving a description, consistent with the laws of geometrical optics, of any 
caustic organised by an eikonal singularity which is not four-determinate, and is only 
completely reliable for three-determinate singularities. (Loosely: A function f : D -+ R 
is k-determinate at some point X E  D if it is right-equioalent to its k-jet, which is its 
Taylor polynomial of degree k about x. Two functions f, g :  D -+ R are  right-equiualent 
if f ( x )  = g( T ( x ) )  for all x E D, for some T :  D --* D which is a difeomorphism, or smooth 
change of coordinates. Determinacy is explained simply by Poston and Stewart (1978, 
ch 8) and more mathematically in the review article by Zeeman (1982).) Interestingly, 
all caustics so far studied in any detail have four-determinate singularities. The failure 
of the paraxial eikonal is subtle and, as we shall show, is not caused by any obvious 
violation of the conditions under which it is derived. 
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2. The paraxial eikonal 

Optics in the ray limit may be described by the eikonal 0, which is the optical distance 
of an observation point P from a general point on an equiphase surface S, called the 
initial wavefront, whose shape may be found from the geometry of the system (Berry 
and Upstill 1980, 0 4.1, pp 297-9). S may always be chosen to be locally smooth, so 
that we may represent it locally as the graph {(x, y, z )  E R3: z = f ( x ,  y))  of a smooth 
function f :  R2+ R, and we represent P by ( X ,  Y,  Z )  E R3. Taking the refractive index 
as unity for simplicity gives 

(1) O(x, y ;  x, Y, Z )  = [ ( Z - f ( x ,  y))’ + ( X  - x)’ + ( Y - y)2]1’2. 

This formula is awkward to work with because of the square root and the ( f ( x ,  y))’ 
term. (Although the square root can be avoided when studying purely geometrical 
properties by working with O’, diffraction studies need O itself.) 

If the ray reaching ( X ,  Y,  Z )  from (x, y, f ( x ,  y))  on S makes a small angle to the 
z axis then 

(Z-f (x ,  y))’>> ( X -  x)’+( Y - y)2. ( 2a )  

Taking the z axis as local optical axis gives (2a)  as the paraxiality condition. Imposing 
also the condition that 

Z>>lf(x,  Y) l  ( 2 b )  
justifies expanding (1) in inverse powers of Z and retaining only the three leading-order 
terms to give the paraxial eikonal 

q ( x, y ; x, Y, Z )  = z - f ( x ,  Y 1 + [( x - x ) ’ + ( Y - Y 1 21/ 22 ,  (3 )  

so that ‘4’ = 0 + O(Z-’ ) .  Note that the paraxial eikonal is defined in terms of a specific 
coordinate system, whereas the exact eikonal is coordinate independent. Condition 
(2a)  will be satisfied globally if IVf (x ,  y)l<< 1 everywhere, and hence S has small 
curvature. Then a coordinate system may be chosen so that If( x, y)l is small everywhere, 
and (2b) will be satisfied for all Z>>O. In particular, (2b) will be satisfied near foci. 

The paraxial eikonal (3) may be either 
(a) analysed globally to determine the (approximate) caustic structure of the 

wavefield, or 
(b) used to examine the neighbourhood of a specific point on the caustic, whose 

exact location is already known. 
We are primarily concerned with the latter application, to a focus arising from a 

specific point, such as an umbilic point (Berry and Upstill 1980, § 4.3, pp 301-5), of 
the initial wavefront S, whose location is already known exactly from its geometrical 
properties. This application includes all the detailed analyses of diffraction catastrophes 
performed to date (e.g. A3 and D4 by Berry et a1 (1979); D5 and E6 by Nye 
(1979)-reviewed by Berry and Upstill (1980)-and OX9 by Upstill et al (1982)). (We 
assume that S is actually a member of a family of initial wavefronts, which is sufficiently 
large that it is generic for the focus we seek to occur.) In this context we can ensure 
that conditions (2a)  and ( 2 6 )  are satisfied without constraining the slope or curvature 
of S by making a suitable choice of coordinate system, as follows. Put the origin at 
the point on S from which the focus originates, so that f(0,O) = 0, and orient the axes 
so that the (x, y) plane is tangent to S at the origin, i.e. V f ( 0 , O )  = 0. Then the ray 
from the origin coincides with the z axis. Furthermore, by a rotation of the (x, y)  
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coordinates we can always put f into the form 

f(x, Y ) = $ ( K ~ X ~ + K ~ Y ’ ) +  C f m n X m y n  
m + n 3 3  

where K ,  and K’ are the principal curvatures of S at the origin. 
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(4) 

3. Validity of the paraxial eikonal in catastrophe optics 

Within the local context of catastrophe optics only rays originating in a neighbourhood 
of the origin are relevant. Conditions (2a )  and (26) may be satisfied for all P lying 
on rays from this neighbourhood simply by taking it small enough, by virtue of our 
choice of coordinate system and the smoothness off. Now the only role played directly 
by the curvature of S is to determine how small the neighbourhood must be. Hence 
it appears that 9 should be a valid approximation to @ in the neighbourhood of a 
generic focus. 

Of course, we expect the description of a caustic by 9 to contain metrical errors, 
whose magnitudes should decrease as Z increases. But can 9 introduce qualitative 
errors? This is the question addressed in this paper. 

We can make the numerical error in approximating @ by 9 as small as we like by 
restricting our attention to a sufficiently small neighbourhood of the focus and of the 
origin; in particular at the focus @ = 9 = Z. But this is not enough. For 9 to give a 
qualitatively correct description of the focus it must be right-equivalent to @ (Poston 
and Stewart 1978). That this requirement may not be satisfied is easily illustrated in 
two dimensions ( x ,  z )  by the parabolic initial wavefront given by f ( x )  = ax’. This is 
well known to focus onto a cusped caustic with its cusp point at X = 0, Z = 1/2a, as 
seen by solving d@’/ax = a’@’/ax’ = 0. The cusp results from the essential quartic 
nature of @’; however, 9 = ( 1 / 2 Z - a ) x 2 - ( X / Z ) x + ( Z + X 2 / 2 Z )  is only quadratic. 
It does not describe any stable focus-at best it indicates its own inadequacy by 
becoming indeterminate, and hence unstable, at what should be the cusp point. In 
fact, 9 describes only one of the three rays involved in the cusp focus, that from 
smallest 1x1. 

This example is extreme, but clearly shows that 9 can indeed lead to immense 
qualitative errors. A complete discussion would require an analysis of 0 and 9 in the 
full parameter space, that is, a comparison of the catastrophes or unfoldings that they 
generate. However, we shall restrict ourselves here to answering the simpler pre- 
liminary question: if 0 has a particular singularity at some focus on the local optical 
axis (the Z axis), what singularities can display at that focus? 

4. The axial singularities 

Consider a focus at Po’ (O ,O,  20); the focusing condition requires that Po lies on a 
curvature centre of S, so we assume throughout that Z, = 1 / ~ ,  . Then 0 ( x ,  y ;  P )  and 
9 ( x ,  y ;  P )  with variable P= ( X ,  Y,  Z )  unfold the singularities cp(x, y )  = @ ( x ,  y ;  Po) 
and $ ( x ,  y )  = 9 ( x ,  y ;  Po) respectively. The true catastrophe type of the focus at Po is 
determined by the singularity cp exhibited by the exact eikonal at the origin, which 
depends on its Taylor coefficients 

cpmn = ( i / m !  n!)(amtnp/aXm a y ” ) ( o ,  0). 
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T o  determine whether CC, is right-equivalent t o  cp we must compare their Taylor 
coefficients, defining $,,,,, analogously to cp,,,,,. 

for m + n = 2 :  

From ( l ) ,  (3) and (4) it is easily computed that: 

9 2 0  = (L?O = 0, 911 = $11 = o ,  ( ~ 0 2  = $02 = $ D. 

where D = K~ - K~ is the curt'ature difference. At an umbilic point K~ = K~ (by definition) 
so that D = 0. 

for m + n = 3 :  

~ m n  = 4 m n  = -fmn ; 

for  m + n = 4 :  

9 4 "  = - f 4 a + i  K : ,  

91 3 = - f13,  

cp3I = - f31  9 9 2 2  =-f22 + a  K : K 2 .  

9 0 4  = - f n j  + Q K I ( K :  - 0'); 

whereas $,, = - f,,,,, : 

and for m + n >  5, we find for example that: 

cp50 = - f 5 0  + t K : f 3 0 ?  Pa,,, = - f05+$ K;7f,l3.  

P h O  = -f60 + f K ;7f4a,I3 (Po6 = -fk + K { f04 - $ D( K :  - D 2 ) } ,  

whereas CL,,, = -f,,,,L (for all m + n Z 3, in fact). 
Only for K ,  = O  do  all Taylor coefficients of cp and 4 agree, which occurs only for 

far-field (limit Za,]+ CO) foci because Z0= 1 / ~ , .  We exclude this relatively trivial case. 
In general, Taylor coefficients of cp and (1, are equal only up to third order. Therefore 
only for three-determinate singularities-the fold and elliptic and hyperbolic umbilics- 
can the paraxial eikonal be guaranteed always to give a correct local description; 
otherwise further analysis of its validity is required. This is consistent with the 
observation (Berry and Upstill 1980, equations (4.3) and (4.4)) that the paraxial 
eikonal correctly describes isolated paraxial rays and their simplest focusing condition. 

5. Cusp and swallowtail foci 

Foci generic in three-space, and hence singularities with codimension s 3, are par- 
ticularly important, so let us consider the cusp and swallowtail in more detail. Assuming 
a cuspoid singularity, the splitting lemma (Poston and Stewart 1978) allows us to write 
the eikonal as a Morse form in one variable plus a residual singularity in the other. 
Defining the nth degree coefficients of the residual singularities in cp and 4 to be C,,, 
and C,,, respectively, we find that 
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that is: 

Generally C,,,,, depend on derivatives of the eikonals of order up  to n, so that C,, f C,, 
for n 3 4. 

The  exact eikonal singularity cp is a cusp (dual cusp) if and only if 

and a necessary condition for it to be a swallowtail is that 

f30 = CO, = 0 ; 

the conditions on 9 are  similar. Therefore cp and $ are  both right-equivalent t o  the  
same cusp singularity if and only if C,, and C,, are  both non-zero and have the same 
sign. This is so if the cusp focus is sufficiently close to  a 'generic umbilic' (DT) focus, 
since 

as the umbilic focus is approached (because K~ = K~ implies that D = 0, and it can be 
shown that f 2 ,  is non-zero) consistent with our  previous observation that generic 
umbilic foci are correctly described by the paraxial eikonal. Generally, from ( 5 c )  and 
assuming K ,  > 0, cp is a standard cusp if (I, is, and (I, is a dual cusp if cp is, but no other 
correspondences necessarily hold, so that + reliably predicts only standard cusps. 

If, however, cp is a swallowtail singularity (C4, = 0), then II, can be a swallowtail 
(C.*, = 0) only if K~ = 0, that is, in the far field (but then a swallowtail is no longer 
generic!). Consequently, a paraxial analysis to find a swallowtail focus along the correct 
ray will fail, and could make it appear impossible to produce a swallowtail focus, 
despite it being generic. 

6. The general axial focus 

Similar arguments apply to higher singularities that may generically occur if the system 
depends on additional control parameters. O u r  results may be summarised in terms 
of paraxial determinacy-we define a focus to be: 

paraxially determined if cp and 4 are always right-equivalent (paraxial determinacy 
is equivalent to three-determinacy): 

paraxially semidetermined if cp and CC, may be right-equivalent; 
paraxially undetermined if cp and (I, cannot be right-equivalent (except in the far 

field). 
In table 1 we list all possible exact-eikonal singularities, their k-determinacies and 

the possible singularities in the corresponding paraxial eikonal. Note that exchanging 
the roles of the exact and paraxial singularities in the table yields the possible sin- 
gularities of the exact eikonal corresponding to  a given paraxial singularity (up  to 
duality). Table 1 was obtained by considering the degeneracy and  non-degeneracy 
conditions (the generalisation of conditions (6) for the cusp above) that determine the 
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Table 1. Paraxial singularities resulting from specific exact singularities. Notation is from 
Arnol’d (1975), with the addition of f signs to distinguish singularities that are distinct 
for real variables (except that for modal singularities we have not distinguished homeo- 
morphism subclasses). 

Exact singularity 

Common Arnol’d Para. Resulting paraxial 
Class name symbol k-det. det.? singularity 

Cuspoids 
A 
(simple) 

Conic 
umbilics 
D 
(simple) 

Exceptional 
umbilics 
E (simple) 
J (model) 

Zero- three- jet 
umbilics 
X and N 
(modal) 

Ray 
Fold 
c u s p  
Higher 

Hyperbolic 
Elliptic 
Parabolic 
Higher 

Symbolic 
Higher 

(Double cusp) 
Non-zero- 
four-jet 
Zero-four-jet 

2 
3 
4 

25 

3 

4 
25 

4 
4, 5, 2 6  

4 
25 

2 5  

Yes 
Yes 
Semi 
No 

Yes 

Semi 
N o  

Semi 
No 

Semi 
No 

No 

A ,  
A2 
*A3, -A, (or A,., k 24) 
-A3 

*E, (or E,., k 2 7 or J) 
-E, 

*X9 (or higher X) 
iX, (or higher X or N )  

XZX, ,  

type of a singularity, and investigating the effect of the change in the four-jet of cp 
when it is paraxially approximated by $. 

Note that the paraxial eikonal preserves the distinction among the four classes: 
cuspoids (A); conic umbilics (D); exceptional umbilics (E, .I); zero-three-jet umbilics 
(X, N), because the distinction is determined by the three-jet, which is preserved in 
the paraxial eikonal. The symbols for the sequences of singularities are due to Arnol’d 
(1975): N is a general name for all zero-four-jet umbilics (i.e. corank two singularities), 
which have not so far been further classified (Arnol’d 1975, Ei 13V). 

The paraxial singularities in parentheses are non-generic cases resulting from special 
choices of initial wavefront (of which our parabolic model is an extreme example). 
Such special cases can occur only for paraxially-semidetermined singularities and for 
zero-three-jet umbilics, as shown in the table. However, it is easy to invent an f 
making $ any desired singularity (although then the true singularity cp will generically 
be four-determinate!). 

We may summarise our results by observing that if cp has any singularity other 
than a zero-four-jet umbilic (N) then 4 is generically four-determinate (i.e. is deter- 
mined by its k-jet with k s 4). This is because the perturbation of cp produced by the 
paraxial approximation is of order four, and in the umbilic case takes the form 
(x2+  ~ ~ ) ~ + 0 ( 5 ) ,  as seen from the Taylor coefficients given earlier. 

One role of the initial wavefront curvature, and hence its focusing height, in 
determining the qualitative validity of the paraxial eikonal has now emerged: as 2, 
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increases the probability increases that for paraxially semidetermined foci cp and I) are 
right-equivalent, because the differences between their fourth derivatives decreases. 

7. Exact and paraxial unfoldings 

In the remainder of this paper we return to considerations of the full eikonals CP and 
9, rather than only their axial singularities cp and $. Recall that for CP generically to 
display a singularity cp of codimension K,  it must depend on at least K independent 
parameters, that is, K - 3 in addition to X, Y, Z. A generic singularity is structurally 
stable, which means that it survives a sufficiently small perturbation-all that happens 
is that it is displaced slightly. Note that here small means (loosely speaking) small in 
the C“ norm, which is vastly more restrictive than just numerically small, i.e. small 
in the CO (or uniform) norm. 

If the paraxial eikonal 9 constituted such a small perturbation of CP, then Y would 
be right-equivalent to CP and one could appeal to structural stability to show that any 
singularity cp of CP would still occur in 9, although probably displaced. But we have 
shown by two counter-examples involving the cusp that 9 may not be right-equivalent 
to CP for any finite Z,. Firstly, in our example of a parabolic initial wavefront, the 
caustic structure of CP was totally lost in Y. Secondly, our general analysis of a cusp 
singularity showed that for given f,,,,, m + n 3 3, and K~ there exists a non-zero range 
of values of K~ for which CP and 9 display cusp singularities of opposite duality at the 
same point on the axis, so that it seems most unlikely that 9 and CP can be right- 
equivalent. In this case 9 would give completely erroneous phase structure for the 
diffraction pattern, although it might well give qualitatively correct amplitude structure, 
and hence a qualitatively correct caustic. 

We conclude that in general Y and CP may or may not be right-equivalent as 
unfoldings, and further investigation is required to ascertain the conditions under which 
they are equivalent. Clearly the condition that the focusing height Z,  be large is 
neither necessary nor sufficient. What we have shown is that if 9 and CP are equivalent, 
and the main singularity is displaced, then it must be displaced off the local optical 
axis, because the focusing height Z,  = 1 / ~ ~  on the axis is preserved by the paraxial 
eikonal. In fact, for a singularity with codimension >3, the displacement may well 
involve the ‘additional’ parameters in the initial wavefront S (which may be regarded 
as the Taylor coefficients o f f )  and make it disappear from the ‘observation subspace’ 
(X, Y , Z ) ,  to be recovered only by selecting a different and nearby member of the 
family of initial wavefronts. 

Our results in table 1 show which exact-eikonal singularities will, or may, be either 
displaced or destroyed (we cannot at present distinguish) by the paraxial eikonal and 
what paraxial singularities can appear in their place. We express the survival in the 
paraxial eikonal of an exact singularity in terms of its paraxial determinacy. One 
observes that the paraxial determinacy of a singularity depends primarily upon its 
k-determinacy, whereas its structural stability depends upon its codimension. The 
distinction is that paraxial determinacy requires that not only the character, but also 
the position, of the singularity be unchanged by the perturbation induced by paraxial 
approximation. This is a much stronger stability condition than structural stability, 
which is stability of character only, but under general perturbations. Analysis of 
paraxial unfoldings would allow a determination of paraxial stability of foci, that is, 
structural stability under the perturbation CP + 9. 
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8. Previous studies using the paraxial eikonal 

As an  application of our  analysis, we observe that the paraxial analysis by Nye (1979) 
of the paraxially semidetermined foci Ds and E6 is valid, but similar analysis for 
paraxially undetermined foci, such as Dg or  E,, would fail t o  find them. At  first sight 
Nye (1978, appendix C) appears to have violated our predictions by analysing a 
butterfly catastrophe (A5)  using the paraxial eikonal. However, he  also found the 
source on the initial wavefront of the butterfly foci using a small-slope approximation 
where the slope was non-zero, so that what he found are not the exact butterfly points. 
H e  essentially performed a (completely self-consistent) global study, our case (a) 
earlier, which is not the subject of our  present considerations. The paraxial eikonal 
probably works better for paraxially semidetermined foci with high symmetry, because 
the resultant constraints will help preserve the  equivalence between cp and $-see for 
example the paraxial analysis of OXy by Upstill et a1 (1982).  It is interesting that all 
the foci that have been studied in any detail experimentally a re  at least paraxially 
semidetermined. 

9. Modal singularities, beak-to-beak and lips events 

We finish with two examples of more subtle qualitative failures of the paraxial eikonal, 
which occur despite it giving essentially the right type of fucus. Firstly, at  least one  
unimodal singularity, Xy, is important in catastrophe optics (Berry and Upstill 1980) 
and OX,, diffraction has been studied in detail by Upstill et a1 (1982).  A modal  singularity 
is a continuous family, parametrised by its moduli, of singularities that are not right- 
equivalent (under diffeomorphism). Any approximation is much less likely to give the 
right member of a continuous family than of a discrete family, so one expects the 
paraxial eikonal to give the wrong moduli: indeed it does give the wrong modulus for 
OXy (see Upstill et a1 (1982),  especially appendix A). In the mid to far field this error 
does not appear t o  be important in practice, although in principle it produces a serious 
topological error. 

O u r  second example involves beak-to-beak and lips events. Consider the initial 
wavefront S given by 

f ( x ,  Y ) = & ( K ~ X  2 + ~ ~ y ’ ) + a x ~ y + b x ‘ .  

Let Z o = l / K L > O ,  D = K ] - K ’ # O  and assume that C,, ( = - b - a 2 / 2 D )  and C4, 
(=  C,,-V$K:) (defined as in ( 5 a )  and ( 5 6 ) )  are  both non-zero and have the same sign. 
Then from ( 6 ) ,  because f3() = 0, cp and $ are  both equivalent to the same cusp singularity 
and the observation point Po lies on a rib (cusp line) of the caustic produced by S. 

Using scaled variables P’ = (X’, Y ’ ,  Z ’ )  = (X, Y, Z-Z,)/Z,,, the tangent to the rib 
at  P’ = 0 lies in the ( Y ’ ,  Z’ )  plane and makes an angle a ,  given by tan a = -2uZ,/D, 
with the  Y’ axis. Rotate the  ( Y ’ , Z ’ )  coordinates into ( Y ” , Z “ )  so that the rib is 
tangent to the Y” axis. Then CJ is locally right-equivalent to the normal form 

C4e~4  + ( - K I QZ”/ 2 D + A, Y”*)  x - X ’  x + Dy’ 

where Q= ( D 2 + 4 a 2 Z ; ) ” *  and A , =  a 2 / D Q 2 + ~ Z / 4 Z i Q Z .  Similarly, q is locally 
right-equivalent t o  the same normal form with C4,+ C,,and A,+ Ap= a’/ DQ’. (The 
second term in A, results essentially from the x 2 y 2  term in @, which is absent in q.) 
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Let E be any plane containing the Y" axis and transverse to the 2" axis. From 
the normal form for @ we infer that the intersection of the caustic with E shows a 
lips or  beak-to-beak event if C,,DA, is negative or  positive respectively. The  paraxial 
eikonal q, however, predicts a lips or  beak-to-beak event if C,, is negative or  positive 
respectively, provided a f 0. Thus, if a # 0 and D K ~  < -4Z;a' then the exact and 
paraxial eikonals predict the opposite events! If a = 0 then Y"  = Y ' ,  Z" = 2' (a = 0) 
and the paraxial eikonal predicts a degenerate intersection (third-order contact) of 
the rib with the Y axis, while the exact eikonal gives a lips or  beak-to-beak according 
as C,, DK> is negative o r  positive respectively. The  case a = 0 is probably the more 
important in practice because it corresponds to  observations in (X, Y )  planes, which 
are perpendicular to the local optical axis and hence correspond to  a focusing sequence. 

10. Conclusions 

The paraxial eikonal is an approximation derived from the exact eikonal by simply 
truncating its Taylor series-a technique that is common in physics, and appears justified 
from purely numerical considerations. The paraxial eikonal is exact in the far-field 
limit; otherwise it will always introduce quantitative errors, but these are expected. 
What is not expected, because it does not result from any violation of the purely 
numerical conditions imposed in the derivation, is that the paraxial eikonal may 
introduce serious qualitative errors. The essential point of our analysis is the warning 
that singularities are sensitive to  approximations in subtle ways, and in general a full 
singularity theory analysis is essential-rule-of-thumb approximations, even if suppor- 
ted by physical and numerical considerations, may not work. 

In all but the simplest cases of the fold (A,) and the generic umbilics (D:) the 
paraxial eikonal may, and in general will, predict the wrong type of focus on the local 
optical axis. Under certain conditions (which have not yet been determined) it may, 
however, predict the correct focus, but displaced from where it should be on the  axis. 
Such a prediction is inconsistent with the laws of geometrical propagation. This is 
connected with the fact that any ray derived from the paraxial eikonal other than that 
along the local optical axis is not in general orthogonal to the initial wavefront. Even 
when it predicts the right type of focus, the paraxial eikonal cannot be relied upon to  
describe the caustic geometry beyond linear variations, because as our  last example 
showed it can give the wrong sign for the caustic curvature. 

These failures of the paraxial eikonal d o  not imply any failure of paraxial optics 
per se-they merely point out the need to make approximations with great care, and 
probably at a later stage than that which produces the paraxial eikonal. To analyse 
paraxially undetermined foci in their correct locations this is essential. It will undoub- 
tedly complicate the algebra, but this could be alleviated by performing the algebraic 
manipulations by computer (e.g. see appendix 1 of Poston and Stewart (1978)). 
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